Metamath Proof Explorer


Theorem syl3anbr

Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011)

Ref Expression
Hypotheses syl3anbr.1 ψφ
syl3anbr.2 θχ
syl3anbr.3 ητ
syl3anbr.4 ψθηζ
Assertion syl3anbr φχτζ

Proof

Step Hyp Ref Expression
1 syl3anbr.1 ψφ
2 syl3anbr.2 θχ
3 syl3anbr.3 ητ
4 syl3anbr.4 ψθηζ
5 1 bicomi φψ
6 2 bicomi χθ
7 3 bicomi τη
8 5 6 7 4 syl3anb φχτζ