Metamath Proof Explorer
		
		
		
		Description:  A triple syllogism inference.  (Contributed by NM, 29-Dec-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | syl3anbr.1 |  | 
					
						|  |  | syl3anbr.2 |  | 
					
						|  |  | syl3anbr.3 |  | 
					
						|  |  | syl3anbr.4 |  | 
				
					|  | Assertion | syl3anbr |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | syl3anbr.1 |  | 
						
							| 2 |  | syl3anbr.2 |  | 
						
							| 3 |  | syl3anbr.3 |  | 
						
							| 4 |  | syl3anbr.4 |  | 
						
							| 5 | 1 | bicomi |  | 
						
							| 6 | 2 | bicomi |  | 
						
							| 7 | 3 | bicomi |  | 
						
							| 8 | 5 6 7 4 | syl3anb |  |