Metamath Proof Explorer


Theorem syl3anr3

Description: A syllogism inference. (Contributed by NM, 23-Aug-2007)

Ref Expression
Hypotheses syl3anr3.1 φτ
syl3anr3.2 χψθτη
Assertion syl3anr3 χψθφη

Proof

Step Hyp Ref Expression
1 syl3anr3.1 φτ
2 syl3anr3.2 χψθτη
3 1 3anim3i ψθφψθτ
4 3 2 sylan2 χψθφη