Metamath Proof Explorer


Theorem syl9r

Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993)

Ref Expression
Hypotheses syl9r.1 φψχ
syl9r.2 θχτ
Assertion syl9r θφψτ

Proof

Step Hyp Ref Expression
1 syl9r.1 φψχ
2 syl9r.2 θχτ
3 1 2 syl9 φθψτ
4 3 com12 θφψτ