Metamath Proof Explorer


Theorem symgtrf

Description: Transpositions are elements of the symmetric group. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Hypotheses symgtrf.t T=ranpmTrspD
symgtrf.g G=SymGrpD
symgtrf.b B=BaseG
Assertion symgtrf TB

Proof

Step Hyp Ref Expression
1 symgtrf.t T=ranpmTrspD
2 symgtrf.g G=SymGrpD
3 symgtrf.b B=BaseG
4 eqid pmTrspD=pmTrspD
5 4 1 pmtrff1o xTx:D1-1 ontoD
6 2 3 elsymgbas2 xTxBx:D1-1 ontoD
7 5 6 mpbird xTxB
8 7 ssriv TB