Metamath Proof Explorer


Theorem tbw-bijust

Description: Justification for tbw-negdf . (Contributed by Anthony Hart, 15-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tbw-bijust φψφψψφ

Proof

Step Hyp Ref Expression
1 dfbi1 φψ¬φψ¬ψφ
2 pm2.21 ¬ψφψφ
3 2 imim2i φψ¬ψφφψψφ
4 id ¬ψφ¬ψφ
5 falim ¬ψφ
6 4 5 ja ψφ¬ψφ
7 6 imim2i φψψφφψ¬ψφ
8 3 7 impbii φψ¬ψφφψψφ
9 8 notbii ¬φψ¬ψφ¬φψψφ
10 pm2.21 ¬φψψφφψψφ
11 ax-1 ¬φψψφφψψφ¬φψψφ
12 falim φψψφ¬φψψφ
13 11 12 ja φψψφφψψφ¬φψψφ
14 13 pm2.43i φψψφ¬φψψφ
15 10 14 impbii ¬φψψφφψψφ
16 1 9 15 3bitri φψφψψφ