| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfbi1 |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) |
| 2 |
|
pm2.21 |
⊢ ( ¬ ( 𝜓 → 𝜑 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) |
| 3 |
2
|
imim2i |
⊢ ( ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) |
| 4 |
|
id |
⊢ ( ¬ ( 𝜓 → 𝜑 ) → ¬ ( 𝜓 → 𝜑 ) ) |
| 5 |
|
falim |
⊢ ( ⊥ → ¬ ( 𝜓 → 𝜑 ) ) |
| 6 |
4 5
|
ja |
⊢ ( ( ( 𝜓 → 𝜑 ) → ⊥ ) → ¬ ( 𝜓 → 𝜑 ) ) |
| 7 |
6
|
imim2i |
⊢ ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) |
| 8 |
3 7
|
impbii |
⊢ ( ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ↔ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) |
| 9 |
8
|
notbii |
⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) |
| 10 |
|
pm2.21 |
⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) ) |
| 11 |
|
ax-1 |
⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ( ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) → ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) ) |
| 12 |
|
falim |
⊢ ( ⊥ → ( ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) → ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) ) |
| 13 |
11 12
|
ja |
⊢ ( ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) → ( ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) → ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) ) |
| 14 |
13
|
pm2.43i |
⊢ ( ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) → ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) |
| 15 |
10 14
|
impbii |
⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ↔ ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) ) |
| 16 |
1 9 15
|
3bitri |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) ) |