| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfbi1 | ⊢ ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) | 
						
							| 2 |  | pm2.21 | ⊢ ( ¬  ( 𝜓  →  𝜑 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) | 
						
							| 3 | 2 | imim2i | ⊢ ( ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) ) | 
						
							| 4 |  | id | ⊢ ( ¬  ( 𝜓  →  𝜑 )  →  ¬  ( 𝜓  →  𝜑 ) ) | 
						
							| 5 |  | falim | ⊢ ( ⊥  →  ¬  ( 𝜓  →  𝜑 ) ) | 
						
							| 6 | 4 5 | ja | ⊢ ( ( ( 𝜓  →  𝜑 )  →  ⊥ )  →  ¬  ( 𝜓  →  𝜑 ) ) | 
						
							| 7 | 6 | imim2i | ⊢ ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) | 
						
							| 8 | 3 7 | impbii | ⊢ ( ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  ↔  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) ) | 
						
							| 9 | 8 | notbii | ⊢ ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) ) | 
						
							| 10 |  | pm2.21 | ⊢ ( ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ ) ) | 
						
							| 11 |  | ax-1 | ⊢ ( ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ( ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) ) ) | 
						
							| 12 |  | falim | ⊢ ( ⊥  →  ( ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) ) ) | 
						
							| 13 | 11 12 | ja | ⊢ ( ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ )  →  ( ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) ) ) | 
						
							| 14 | 13 | pm2.43i | ⊢ ( ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) ) ) | 
						
							| 15 | 10 14 | impbii | ⊢ ( ¬  ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  ↔  ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ ) ) | 
						
							| 16 | 1 9 15 | 3bitri | ⊢ ( ( 𝜑  ↔  𝜓 )  ↔  ( ( ( 𝜑  →  𝜓 )  →  ( ( 𝜓  →  𝜑 )  →  ⊥ ) )  →  ⊥ ) ) |