Metamath Proof Explorer


Theorem tfis2f

Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994)

Ref Expression
Hypotheses tfis2f.1 xψ
tfis2f.2 x=yφψ
tfis2f.3 xOnyxψφ
Assertion tfis2f xOnφ

Proof

Step Hyp Ref Expression
1 tfis2f.1 xψ
2 tfis2f.2 x=yφψ
3 tfis2f.3 xOnyxψφ
4 1 2 sbiev yxφψ
5 4 ralbii yxyxφyxψ
6 5 3 biimtrid xOnyxyxφφ
7 6 tfis xOnφ