Metamath Proof Explorer


Theorem tfis3

Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003)

Ref Expression
Hypotheses tfis3.1 x=yφψ
tfis3.2 x=Aφχ
tfis3.3 xOnyxψφ
Assertion tfis3 AOnχ

Proof

Step Hyp Ref Expression
1 tfis3.1 x=yφψ
2 tfis3.2 x=Aφχ
3 tfis3.3 xOnyxψφ
4 1 3 tfis2 xOnφ
5 2 4 vtoclga AOnχ