Step |
Hyp |
Ref |
Expression |
1 |
|
tfisi.a |
|
2 |
|
tfisi.b |
|
3 |
|
tfisi.c |
|
4 |
|
tfisi.d |
|
5 |
|
tfisi.e |
|
6 |
|
tfisi.f |
|
7 |
|
tfisi.g |
|
8 |
|
ssid |
|
9 |
|
eqid |
|
10 |
|
eqeq2 |
|
11 |
|
sseq1 |
|
12 |
11
|
anbi2d |
|
13 |
12
|
imbi1d |
|
14 |
10 13
|
imbi12d |
|
15 |
14
|
albidv |
|
16 |
6
|
eqeq1d |
|
17 |
4
|
imbi2d |
|
18 |
16 17
|
imbi12d |
|
19 |
18
|
cbvalvw |
|
20 |
15 19
|
bitrdi |
|
21 |
|
eqeq2 |
|
22 |
|
sseq1 |
|
23 |
22
|
anbi2d |
|
24 |
23
|
imbi1d |
|
25 |
21 24
|
imbi12d |
|
26 |
25
|
albidv |
|
27 |
|
simp3l |
|
28 |
|
simp2 |
|
29 |
|
simp1l |
|
30 |
28 29
|
eqeltrd |
|
31 |
|
simp3r |
|
32 |
28 31
|
eqsstrd |
|
33 |
|
simpl3l |
|
34 |
|
simpl1l |
|
35 |
|
simpr |
|
36 |
|
simpl2 |
|
37 |
35 36
|
eleqtrd |
|
38 |
|
onelss |
|
39 |
34 37 38
|
sylc |
|
40 |
|
simpl3r |
|
41 |
39 40
|
sstrd |
|
42 |
|
eqeq2 |
|
43 |
|
sseq1 |
|
44 |
43
|
anbi2d |
|
45 |
44
|
imbi1d |
|
46 |
42 45
|
imbi12d |
|
47 |
46
|
albidv |
|
48 |
|
simpl1r |
|
49 |
47 48 37
|
rspcdva |
|
50 |
|
eqidd |
|
51 |
|
nfcv |
|
52 |
|
nfcv |
|
53 |
51 52 6
|
csbhypf |
|
54 |
53
|
eqcomd |
|
55 |
54
|
equcoms |
|
56 |
55
|
eqeq1d |
|
57 |
|
nfv |
|
58 |
57 4
|
sbhypf |
|
59 |
58
|
bicomd |
|
60 |
59
|
equcoms |
|
61 |
60
|
imbi2d |
|
62 |
56 61
|
imbi12d |
|
63 |
62
|
spvv |
|
64 |
49 50 63
|
sylc |
|
65 |
33 41 64
|
mp2and |
|
66 |
65
|
ex |
|
67 |
66
|
alrimiv |
|
68 |
53
|
eleq1d |
|
69 |
68 58
|
imbi12d |
|
70 |
69
|
cbvalvw |
|
71 |
67 70
|
sylib |
|
72 |
27 30 32 71 3
|
syl121anc |
|
73 |
72
|
3exp |
|
74 |
73
|
alrimiv |
|
75 |
74
|
ex |
|
76 |
20 26 75
|
tfis3 |
|
77 |
2 76
|
syl |
|
78 |
7
|
eqeq1d |
|
79 |
5
|
imbi2d |
|
80 |
78 79
|
imbi12d |
|
81 |
80
|
spcgv |
|
82 |
1 77 81
|
sylc |
|
83 |
9 82
|
mpi |
|
84 |
83
|
expd |
|
85 |
84
|
pm2.43i |
|
86 |
8 85
|
mpi |
|