Metamath Proof Explorer


Theorem onelss

Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion onelss AOnBABA

Proof

Step Hyp Ref Expression
1 eloni AOnOrdA
2 ordelss OrdABABA
3 2 ex OrdABABA
4 1 3 syl AOnBABA