Step |
Hyp |
Ref |
Expression |
1 |
|
tfisi.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
tfisi.b |
⊢ ( 𝜑 → 𝑇 ∈ On ) |
3 |
|
tfisi.c |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ On ∧ 𝑅 ⊆ 𝑇 ) ∧ ∀ 𝑦 ( 𝑆 ∈ 𝑅 → 𝜒 ) ) → 𝜓 ) |
4 |
|
tfisi.d |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) |
5 |
|
tfisi.e |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
6 |
|
tfisi.f |
⊢ ( 𝑥 = 𝑦 → 𝑅 = 𝑆 ) |
7 |
|
tfisi.g |
⊢ ( 𝑥 = 𝐴 → 𝑅 = 𝑇 ) |
8 |
|
ssid |
⊢ 𝑇 ⊆ 𝑇 |
9 |
|
eqid |
⊢ 𝑇 = 𝑇 |
10 |
|
eqeq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑅 = 𝑧 ↔ 𝑅 = 𝑤 ) ) |
11 |
|
sseq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ⊆ 𝑇 ↔ 𝑤 ⊆ 𝑇 ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ↔ ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) ) ) |
13 |
12
|
imbi1d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ) |
14 |
10 13
|
imbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
15 |
14
|
albidv |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑥 ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
16 |
6
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝑅 = 𝑤 ↔ 𝑆 = 𝑤 ) ) |
17 |
4
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) |
18 |
16 17
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
19 |
18
|
cbvalvw |
⊢ ( ∀ 𝑥 ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) |
20 |
15 19
|
bitrdi |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
21 |
|
eqeq2 |
⊢ ( 𝑧 = 𝑇 → ( 𝑅 = 𝑧 ↔ 𝑅 = 𝑇 ) ) |
22 |
|
sseq1 |
⊢ ( 𝑧 = 𝑇 → ( 𝑧 ⊆ 𝑇 ↔ 𝑇 ⊆ 𝑇 ) ) |
23 |
22
|
anbi2d |
⊢ ( 𝑧 = 𝑇 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ↔ ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) ) ) |
24 |
23
|
imbi1d |
⊢ ( 𝑧 = 𝑇 → ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) |
25 |
21 24
|
imbi12d |
⊢ ( 𝑧 = 𝑇 → ( ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
26 |
25
|
albidv |
⊢ ( 𝑧 = 𝑇 → ( ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
27 |
|
simp3l |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝜑 ) |
28 |
|
simp2 |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑅 = 𝑧 ) |
29 |
|
simp1l |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑧 ∈ On ) |
30 |
28 29
|
eqeltrd |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑅 ∈ On ) |
31 |
|
simp3r |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑧 ⊆ 𝑇 ) |
32 |
28 31
|
eqsstrd |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑅 ⊆ 𝑇 ) |
33 |
|
simpl3l |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝜑 ) |
34 |
|
simpl1l |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝑧 ∈ On ) |
35 |
|
simpr |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) |
36 |
|
simpl2 |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝑅 = 𝑧 ) |
37 |
35 36
|
eleqtrd |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑧 ) |
38 |
|
onelss |
⊢ ( 𝑧 ∈ On → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑧 → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑧 ) ) |
39 |
34 37 38
|
sylc |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑧 ) |
40 |
|
simpl3r |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝑧 ⊆ 𝑇 ) |
41 |
39 40
|
sstrd |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) |
42 |
|
eqeq2 |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( 𝑆 = 𝑤 ↔ 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) ) |
43 |
|
sseq1 |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( 𝑤 ⊆ 𝑇 ↔ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) ) |
44 |
43
|
anbi2d |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) ↔ ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) ) ) |
45 |
44
|
imbi1d |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ↔ ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) |
46 |
42 45
|
imbi12d |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ↔ ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
47 |
46
|
albidv |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ↔ ∀ 𝑦 ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
48 |
|
simpl1r |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) |
49 |
47 48 37
|
rspcdva |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ∀ 𝑦 ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) |
50 |
|
eqidd |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) |
51 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
52 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑆 |
53 |
51 52 6
|
csbhypf |
⊢ ( 𝑣 = 𝑦 → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = 𝑆 ) |
54 |
53
|
eqcomd |
⊢ ( 𝑣 = 𝑦 → 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) |
55 |
54
|
equcoms |
⊢ ( 𝑦 = 𝑣 → 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) |
56 |
55
|
eqeq1d |
⊢ ( 𝑦 = 𝑣 → ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ↔ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) ) |
57 |
|
nfv |
⊢ Ⅎ 𝑥 𝜒 |
58 |
57 4
|
sbhypf |
⊢ ( 𝑣 = 𝑦 → ( [ 𝑣 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) |
59 |
58
|
bicomd |
⊢ ( 𝑣 = 𝑦 → ( 𝜒 ↔ [ 𝑣 / 𝑥 ] 𝜓 ) ) |
60 |
59
|
equcoms |
⊢ ( 𝑦 = 𝑣 → ( 𝜒 ↔ [ 𝑣 / 𝑥 ] 𝜓 ) ) |
61 |
60
|
imbi2d |
⊢ ( 𝑦 = 𝑣 → ( ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ↔ ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) ) |
62 |
56 61
|
imbi12d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ↔ ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) ) ) |
63 |
62
|
spvv |
⊢ ( ∀ 𝑦 ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) ) |
64 |
49 50 63
|
sylc |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) |
65 |
33 41 64
|
mp2and |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → [ 𝑣 / 𝑥 ] 𝜓 ) |
66 |
65
|
ex |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ) |
67 |
66
|
alrimiv |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → ∀ 𝑣 ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ) |
68 |
53
|
eleq1d |
⊢ ( 𝑣 = 𝑦 → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ↔ 𝑆 ∈ 𝑅 ) ) |
69 |
68 58
|
imbi12d |
⊢ ( 𝑣 = 𝑦 → ( ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ↔ ( 𝑆 ∈ 𝑅 → 𝜒 ) ) ) |
70 |
69
|
cbvalvw |
⊢ ( ∀ 𝑣 ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ↔ ∀ 𝑦 ( 𝑆 ∈ 𝑅 → 𝜒 ) ) |
71 |
67 70
|
sylib |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → ∀ 𝑦 ( 𝑆 ∈ 𝑅 → 𝜒 ) ) |
72 |
27 30 32 71 3
|
syl121anc |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝜓 ) |
73 |
72
|
3exp |
⊢ ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) → ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ) |
74 |
73
|
alrimiv |
⊢ ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) → ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ) |
75 |
74
|
ex |
⊢ ( 𝑧 ∈ On → ( ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) → ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
76 |
20 26 75
|
tfis3 |
⊢ ( 𝑇 ∈ On → ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) |
77 |
2 76
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) |
78 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝑅 = 𝑇 ↔ 𝑇 = 𝑇 ) ) |
79 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) |
80 |
78 79
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑇 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) ) |
81 |
80
|
spcgv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) → ( 𝑇 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) ) |
82 |
1 77 81
|
sylc |
⊢ ( 𝜑 → ( 𝑇 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) |
83 |
9 82
|
mpi |
⊢ ( 𝜑 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) |
84 |
83
|
expd |
⊢ ( 𝜑 → ( 𝜑 → ( 𝑇 ⊆ 𝑇 → 𝜃 ) ) ) |
85 |
84
|
pm2.43i |
⊢ ( 𝜑 → ( 𝑇 ⊆ 𝑇 → 𝜃 ) ) |
86 |
8 85
|
mpi |
⊢ ( 𝜑 → 𝜃 ) |