Metamath Proof Explorer


Theorem topgrpplusg

Description: The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis topgrpfn.w W=BasendxB+ndx+˙TopSetndxJ
Assertion topgrpplusg +˙X+˙=+W

Proof

Step Hyp Ref Expression
1 topgrpfn.w W=BasendxB+ndx+˙TopSetndxJ
2 1 topgrpstr WStruct19
3 plusgid +𝑔=Slot+ndx
4 snsstp2 +ndx+˙BasendxB+ndx+˙TopSetndxJ
5 4 1 sseqtrri +ndx+˙W
6 2 3 5 strfv +˙X+˙=+W