Metamath Proof Explorer


Theorem topgrptset

Description: The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis topgrpfn.w W=BasendxB+ndx+˙TopSetndxJ
Assertion topgrptset JXJ=TopSetW

Proof

Step Hyp Ref Expression
1 topgrpfn.w W=BasendxB+ndx+˙TopSetndxJ
2 1 topgrpstr WStruct19
3 tsetid TopSet=SlotTopSetndx
4 snsstp3 TopSetndxJBasendxB+ndx+˙TopSetndxJ
5 4 1 sseqtrri TopSetndxJW
6 2 3 5 strfv JXJ=TopSetW