Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
tpid1g
Next ⟩
tpid2
Metamath Proof Explorer
Ascii
Unicode
Theorem
tpid1g
Description:
Closed theorem form of
tpid1
.
(Contributed by
Glauco Siliprandi
, 23-Oct-2021)
Ref
Expression
Assertion
tpid1g
⊢
A
∈
B
→
A
∈
A
C
D
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
A
=
A
2
1
3mix1i
⊢
A
=
A
∨
A
=
C
∨
A
=
D
3
eltpg
⊢
A
∈
B
→
A
∈
A
C
D
↔
A
=
A
∨
A
=
C
∨
A
=
D
4
2
3
mpbiri
⊢
A
∈
B
→
A
∈
A
C
D