Metamath Proof Explorer


Theorem tposfo

Description: The domain and codomain/range of a transposition. (Contributed by NM, 10-Sep-2015)

Ref Expression
Assertion tposfo F:A×BontoCtposF:B×AontoC

Proof

Step Hyp Ref Expression
1 relxp RelA×B
2 tposfo2 RelA×BF:A×BontoCtposF:A×B-1ontoC
3 1 2 ax-mp F:A×BontoCtposF:A×B-1ontoC
4 cnvxp A×B-1=B×A
5 foeq2 A×B-1=B×AtposF:A×B-1ontoCtposF:B×AontoC
6 4 5 ax-mp tposF:A×B-1ontoCtposF:B×AontoC
7 3 6 sylib F:A×BontoCtposF:B×AontoC