Metamath Proof Explorer


Theorem trintss

Description: Any nonempty transitive class includes its intersection. Exercise 3 in TakeutiZaring p. 44 (which mistakenly does not include the nonemptiness hypothesis). (Contributed by Scott Fenton, 3-Mar-2011) (Proof shortened by Andrew Salmon, 14-Nov-2011)

Ref Expression
Assertion trintss TrAAAA

Proof

Step Hyp Ref Expression
1 n0 AxxA
2 intss1 xAAx
3 trss TrAxAxA
4 3 com12 xATrAxA
5 sstr2 AxxAAA
6 2 4 5 sylsyld xATrAAA
7 6 exlimiv xxATrAAA
8 1 7 sylbi ATrAAA
9 8 impcom TrAAAA