Metamath Proof Explorer
		
		
		
		Description:  The underlying set of the product of two topologies.  (Contributed by Jeff Madsen, 15-Jun-2010)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | txunii.1 |  | 
					
						|  |  | txunii.2 |  | 
					
						|  |  | txunii.3 |  | 
					
						|  |  | txunii.4 |  | 
				
					|  | Assertion | txunii |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txunii.1 |  | 
						
							| 2 |  | txunii.2 |  | 
						
							| 3 |  | txunii.3 |  | 
						
							| 4 |  | txunii.4 |  | 
						
							| 5 | 3 4 | txuni |  | 
						
							| 6 | 1 2 5 | mp2an |  |