Metamath Proof Explorer
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010)
|
|
Ref |
Expression |
|
Hypotheses |
txunii.1 |
⊢ 𝑅 ∈ Top |
|
|
txunii.2 |
⊢ 𝑆 ∈ Top |
|
|
txunii.3 |
⊢ 𝑋 = ∪ 𝑅 |
|
|
txunii.4 |
⊢ 𝑌 = ∪ 𝑆 |
|
Assertion |
txunii |
⊢ ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txunii.1 |
⊢ 𝑅 ∈ Top |
| 2 |
|
txunii.2 |
⊢ 𝑆 ∈ Top |
| 3 |
|
txunii.3 |
⊢ 𝑋 = ∪ 𝑅 |
| 4 |
|
txunii.4 |
⊢ 𝑌 = ∪ 𝑆 |
| 5 |
3 4
|
txuni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 6 |
1 2 5
|
mp2an |
⊢ ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) |