Metamath Proof Explorer


Theorem ptuni

Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypothesis ptuni.1 𝐽 = ( ∏t𝐹 )
Assertion ptuni ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → X 𝑥𝐴 ( 𝐹𝑥 ) = 𝐽 )

Proof

Step Hyp Ref Expression
1 ptuni.1 𝐽 = ( ∏t𝐹 )
2 eqid { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } = { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
3 2 ptbas ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } ∈ TopBases )
4 unitg ( { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } ∈ TopBases → ( topGen ‘ { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } ) = { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } )
5 3 4 syl ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( topGen ‘ { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } ) = { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } )
6 ffn ( 𝐹 : 𝐴 ⟶ Top → 𝐹 Fn 𝐴 )
7 2 ptval ( ( 𝐴𝑉𝐹 Fn 𝐴 ) → ( ∏t𝐹 ) = ( topGen ‘ { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } ) )
8 6 7 sylan2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( ∏t𝐹 ) = ( topGen ‘ { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } ) )
9 1 8 eqtrid ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐽 = ( topGen ‘ { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } ) )
10 9 unieqd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐽 = ( topGen ‘ { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } ) )
11 2 ptuni2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → X 𝑥𝐴 ( 𝐹𝑥 ) = { 𝑘 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑘 = X 𝑦𝐴 ( 𝑔𝑦 ) ) } )
12 5 10 11 3eqtr4rd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → X 𝑥𝐴 ( 𝐹𝑥 ) = 𝐽 )