Metamath Proof Explorer


Theorem tz6.12-1

Description: Function value. Theorem 6.12(1) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004) (Proof shortened by SN, 23-Dec-2024)

Ref Expression
Assertion tz6.12-1 AFy∃!yAFyFA=y

Proof

Step Hyp Ref Expression
1 tz6.12c ∃!yAFyFA=yAFy
2 1 biimparc AFy∃!yAFyFA=y