Metamath Proof Explorer


Theorem un4

Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004)

Ref Expression
Assertion un4 ABCD=ACBD

Proof

Step Hyp Ref Expression
1 un12 BCD=CBD
2 1 uneq2i ABCD=ACBD
3 unass ABCD=ABCD
4 unass ACBD=ACBD
5 2 3 4 3eqtr4i ABCD=ACBD