Metamath Proof Explorer


Theorem unass

Description: Associative law for union of classes. Exercise 8 of TakeutiZaring p. 17. (Contributed by NM, 3-May-1994) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion unass ABC=ABC

Proof

Step Hyp Ref Expression
1 elun xABCxAxBC
2 elun xBCxBxC
3 2 orbi2i xAxBCxAxBxC
4 elun xABxAxB
5 4 orbi1i xABxCxAxBxC
6 orass xAxBxCxAxBxC
7 5 6 bitr2i xAxBxCxABxC
8 1 3 7 3bitrri xABxCxABC
9 8 uneqri ABC=ABC