Metamath Proof Explorer


Theorem uniordint

Description: The union of a set of ordinals is equal to the intersection of its upper bounds. Problem 2.5(ii) of BellMachover p. 471. (Contributed by NM, 20-Sep-2003)

Ref Expression
Hypothesis uniordint.1 AV
Assertion uniordint AOnA=xOn|yAyx

Proof

Step Hyp Ref Expression
1 uniordint.1 AV
2 1 ssonunii AOnAOn
3 intmin AOnxOn|Ax=A
4 unissb AxyAyx
5 4 rabbii xOn|Ax=xOn|yAyx
6 5 inteqi xOn|Ax=xOn|yAyx
7 3 6 eqtr3di AOnA=xOn|yAyx
8 2 7 syl AOnA=xOn|yAyx