Metamath Proof Explorer


Theorem usgr0e

Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 16-Oct-2020) (Proof shortened by AV, 25-Nov-2020)

Ref Expression
Hypotheses usgr0e.g φGW
usgr0e.e φiEdgG=
Assertion usgr0e φGUSGraph

Proof

Step Hyp Ref Expression
1 usgr0e.g φGW
2 usgr0e.e φiEdgG=
3 2 f10d φiEdgG:domiEdgG1-1x𝒫VtxG|x=2
4 eqid VtxG=VtxG
5 eqid iEdgG=iEdgG
6 4 5 isusgr GWGUSGraphiEdgG:domiEdgG1-1x𝒫VtxG|x=2
7 1 6 syl φGUSGraphiEdgG:domiEdgG1-1x𝒫VtxG|x=2
8 3 7 mpbird φGUSGraph