Metamath Proof Explorer


Definition df-usgr

Description: Define the class of all undirected simple graphs (without loops). An undirected simple graph is a special undirected simple pseudograph (see usgruspgr ), consisting of a set v (of "vertices") and an injective (one-to-one) function e (representing (indexed) "edges") into subsets of v of cardinality two, representing the two vertices incident to the edge. In contrast to an undirected simple pseudograph, an undirected simple graph has no loops (edges connecting a vertex with itself). (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 13-Oct-2020)

Ref Expression
Assertion df-usgr USGraph=g|[˙Vtxg/v]˙[˙iEdgg/e]˙e:dome1-1x𝒫v|x=2

Detailed syntax breakdown

Step Hyp Ref Expression
0 cusgr classUSGraph
1 vg setvarg
2 cvtx classVtx
3 1 cv setvarg
4 3 2 cfv classVtxg
5 vv setvarv
6 ciedg classiEdg
7 3 6 cfv classiEdgg
8 ve setvare
9 8 cv setvare
10 9 cdm classdome
11 vx setvarx
12 5 cv setvarv
13 12 cpw class𝒫v
14 c0 class
15 14 csn class
16 13 15 cdif class𝒫v
17 chash class.
18 11 cv setvarx
19 18 17 cfv classx
20 c2 class2
21 19 20 wceq wffx=2
22 21 11 16 crab classx𝒫v|x=2
23 10 22 9 wf1 wffe:dome1-1x𝒫v|x=2
24 23 8 7 wsbc wff[˙iEdgg/e]˙e:dome1-1x𝒫v|x=2
25 24 5 4 wsbc wff[˙Vtxg/v]˙[˙iEdgg/e]˙e:dome1-1x𝒫v|x=2
26 25 1 cab classg|[˙Vtxg/v]˙[˙iEdgg/e]˙e:dome1-1x𝒫v|x=2
27 0 26 wceq wffUSGraph=g|[˙Vtxg/v]˙[˙iEdgg/e]˙e:dome1-1x𝒫v|x=2