Metamath Proof Explorer


Definition df-usgr

Description: Define the class of all undirected simple graphs (without loops). An undirected simple graph is a special undirected simple pseudograph (see usgruspgr ), consisting of a set v (of "vertices") and an injective (one-to-one) function e (representing (indexed) "edges") into subsets of v of cardinality two, representing the two vertices incident to the edge. In contrast to an undirected simple pseudograph, an undirected simple graph has no loops (edges connecting a vertex with itself). (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 13-Oct-2020)

Ref Expression
Assertion df-usgr
|- USGraph = { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> { x e. ( ~P v \ { (/) } ) | ( # ` x ) = 2 } }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cusgr
 |-  USGraph
1 vg
 |-  g
2 cvtx
 |-  Vtx
3 1 cv
 |-  g
4 3 2 cfv
 |-  ( Vtx ` g )
5 vv
 |-  v
6 ciedg
 |-  iEdg
7 3 6 cfv
 |-  ( iEdg ` g )
8 ve
 |-  e
9 8 cv
 |-  e
10 9 cdm
 |-  dom e
11 vx
 |-  x
12 5 cv
 |-  v
13 12 cpw
 |-  ~P v
14 c0
 |-  (/)
15 14 csn
 |-  { (/) }
16 13 15 cdif
 |-  ( ~P v \ { (/) } )
17 chash
 |-  #
18 11 cv
 |-  x
19 18 17 cfv
 |-  ( # ` x )
20 c2
 |-  2
21 19 20 wceq
 |-  ( # ` x ) = 2
22 21 11 16 crab
 |-  { x e. ( ~P v \ { (/) } ) | ( # ` x ) = 2 }
23 10 22 9 wf1
 |-  e : dom e -1-1-> { x e. ( ~P v \ { (/) } ) | ( # ` x ) = 2 }
24 23 8 7 wsbc
 |-  [. ( iEdg ` g ) / e ]. e : dom e -1-1-> { x e. ( ~P v \ { (/) } ) | ( # ` x ) = 2 }
25 24 5 4 wsbc
 |-  [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> { x e. ( ~P v \ { (/) } ) | ( # ` x ) = 2 }
26 25 1 cab
 |-  { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> { x e. ( ~P v \ { (/) } ) | ( # ` x ) = 2 } }
27 0 26 wceq
 |-  USGraph = { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> { x e. ( ~P v \ { (/) } ) | ( # ` x ) = 2 } }