Metamath Proof Explorer


Theorem isuspgr

Description: The property of being a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 13-Oct-2020)

Ref Expression
Hypotheses isuspgr.v V = Vtx G
isuspgr.e E = iEdg G
Assertion isuspgr G U G USHGraph E : dom E 1-1 x 𝒫 V | x 2

Proof

Step Hyp Ref Expression
1 isuspgr.v V = Vtx G
2 isuspgr.e E = iEdg G
3 df-uspgr USHGraph = g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x 2
4 3 eleq2i G USHGraph G g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x 2
5 fveq2 h = G iEdg h = iEdg G
6 5 2 eqtr4di h = G iEdg h = E
7 5 dmeqd h = G dom iEdg h = dom iEdg G
8 2 eqcomi iEdg G = E
9 8 dmeqi dom iEdg G = dom E
10 7 9 eqtrdi h = G dom iEdg h = dom E
11 fveq2 h = G Vtx h = Vtx G
12 11 1 eqtr4di h = G Vtx h = V
13 12 pweqd h = G 𝒫 Vtx h = 𝒫 V
14 13 difeq1d h = G 𝒫 Vtx h = 𝒫 V
15 14 rabeqdv h = G x 𝒫 Vtx h | x 2 = x 𝒫 V | x 2
16 6 10 15 f1eq123d h = G iEdg h : dom iEdg h 1-1 x 𝒫 Vtx h | x 2 E : dom E 1-1 x 𝒫 V | x 2
17 fvexd g = h Vtx g V
18 fveq2 g = h Vtx g = Vtx h
19 fvexd g = h v = Vtx h iEdg g V
20 fveq2 g = h iEdg g = iEdg h
21 20 adantr g = h v = Vtx h iEdg g = iEdg h
22 simpr g = h v = Vtx h e = iEdg h e = iEdg h
23 22 dmeqd g = h v = Vtx h e = iEdg h dom e = dom iEdg h
24 pweq v = Vtx h 𝒫 v = 𝒫 Vtx h
25 24 ad2antlr g = h v = Vtx h e = iEdg h 𝒫 v = 𝒫 Vtx h
26 25 difeq1d g = h v = Vtx h e = iEdg h 𝒫 v = 𝒫 Vtx h
27 26 rabeqdv g = h v = Vtx h e = iEdg h x 𝒫 v | x 2 = x 𝒫 Vtx h | x 2
28 22 23 27 f1eq123d g = h v = Vtx h e = iEdg h e : dom e 1-1 x 𝒫 v | x 2 iEdg h : dom iEdg h 1-1 x 𝒫 Vtx h | x 2
29 19 21 28 sbcied2 g = h v = Vtx h [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x 2 iEdg h : dom iEdg h 1-1 x 𝒫 Vtx h | x 2
30 17 18 29 sbcied2 g = h [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x 2 iEdg h : dom iEdg h 1-1 x 𝒫 Vtx h | x 2
31 30 cbvabv g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x 2 = h | iEdg h : dom iEdg h 1-1 x 𝒫 Vtx h | x 2
32 16 31 elab2g G U G g | [˙ Vtx g / v]˙ [˙ iEdg g / e]˙ e : dom e 1-1 x 𝒫 v | x 2 E : dom E 1-1 x 𝒫 V | x 2
33 4 32 syl5bb G U G USHGraph E : dom E 1-1 x 𝒫 V | x 2