Database GRAPH THEORY Undirected graphs Undirected simple graphs usgrunop  
				
		 
		
			
		 
		Description:   The union of two simple graphs (with the same vertex set):  If
       <. V , E >.  and <. V , F >.  are simple graphs, then
       <. V , E u. F >.  is a multigraph (not necessarily a simple graph!) -
       the vertex set stays the same, but the edges from both graphs are kept,
       possibly resulting in two edges between two vertices.  (Contributed by AV , 29-Nov-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						usgrun.g    ⊢   φ   →   G  ∈  USGraph         
					 
					
						usgrun.h    ⊢   φ   →   H  ∈  USGraph         
					 
					
						usgrun.e   ⊢   E  =    iEdg   ⁡  G        
					 
					
						usgrun.f   ⊢   F  =    iEdg   ⁡  H        
					 
					
						usgrun.vg   ⊢   V  =    Vtx   ⁡  G        
					 
					
						usgrun.vh    ⊢   φ   →     Vtx   ⁡  H   =  V         
					 
					
						usgrun.i    ⊢   φ   →     dom  ⁡  E    ∩   dom  ⁡  F      =  ∅         
					 
				
					Assertion 
					usgrunop    ⊢   φ   →    V   E  ∪  F      ∈  UMGraph         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							usgrun.g   ⊢   φ   →   G  ∈  USGraph         
						
							2 
								
							 
							usgrun.h   ⊢   φ   →   H  ∈  USGraph         
						
							3 
								
							 
							usgrun.e  ⊢   E  =    iEdg   ⁡  G        
						
							4 
								
							 
							usgrun.f  ⊢   F  =    iEdg   ⁡  H        
						
							5 
								
							 
							usgrun.vg  ⊢   V  =    Vtx   ⁡  G        
						
							6 
								
							 
							usgrun.vh   ⊢   φ   →     Vtx   ⁡  H   =  V         
						
							7 
								
							 
							usgrun.i   ⊢   φ   →     dom  ⁡  E    ∩   dom  ⁡  F      =  ∅         
						
							8 
								
							 
							usgrumgr   ⊢   G  ∈  USGraph    →   G  ∈  UMGraph         
						
							9 
								1  8 
							 
							syl   ⊢   φ   →   G  ∈  UMGraph         
						
							10 
								
							 
							usgrumgr   ⊢   H  ∈  USGraph    →   H  ∈  UMGraph         
						
							11 
								2  10 
							 
							syl   ⊢   φ   →   H  ∈  UMGraph         
						
							12 
								9  11  3  4  5  6  7 
							 
							umgrunop   ⊢   φ   →    V   E  ∪  F      ∈  UMGraph