Metamath Proof Explorer


Theorem usgrunop

Description: The union of two simple graphs (with the same vertex set): If <. V , E >. and <. V , F >. are simple graphs, then <. V , E u. F >. is a multigraph (not necessarily a simple graph!) - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020)

Ref Expression
Hypotheses usgrun.g φGUSGraph
usgrun.h φHUSGraph
usgrun.e E=iEdgG
usgrun.f F=iEdgH
usgrun.vg V=VtxG
usgrun.vh φVtxH=V
usgrun.i φdomEdomF=
Assertion usgrunop φVEFUMGraph

Proof

Step Hyp Ref Expression
1 usgrun.g φGUSGraph
2 usgrun.h φHUSGraph
3 usgrun.e E=iEdgG
4 usgrun.f F=iEdgH
5 usgrun.vg V=VtxG
6 usgrun.vh φVtxH=V
7 usgrun.i φdomEdomF=
8 usgrumgr GUSGraphGUMGraph
9 1 8 syl φGUMGraph
10 usgrumgr HUSGraphHUMGraph
11 2 10 syl φHUMGraph
12 9 11 3 4 5 6 7 umgrunop φVEFUMGraph