Metamath Proof Explorer


Theorem uvcvvcl

Description: A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcfval.u U=RunitVecI
uvcfval.o 1˙=1R
uvcfval.z 0˙=0R
Assertion uvcvvcl RVIWJIKIUJK0˙1˙

Proof

Step Hyp Ref Expression
1 uvcfval.u U=RunitVecI
2 uvcfval.o 1˙=1R
3 uvcfval.z 0˙=0R
4 1 2 3 uvcvval RVIWJIKIUJK=ifK=J1˙0˙
5 2 fvexi 1˙V
6 3 fvexi 0˙V
7 ifpr 1˙V0˙VifK=J1˙0˙1˙0˙
8 5 6 7 mp2an ifK=J1˙0˙1˙0˙
9 prcom 1˙0˙=0˙1˙
10 8 9 eleqtri ifK=J1˙0˙0˙1˙
11 4 10 eqeltrdi RVIWJIKIUJK0˙1˙