Metamath Proof Explorer


Theorem uzred

Description: An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzred.1 Z=M
uzred.2 φAZ
Assertion uzred φA

Proof

Step Hyp Ref Expression
1 uzred.1 Z=M
2 uzred.2 φAZ
3 zssre
4 1 2 eluzelz2d φA
5 3 4 sselid φA