Metamath Proof Explorer


Theorem vdif0

Description: Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003)

Ref Expression
Assertion vdif0 A=VVA=

Proof

Step Hyp Ref Expression
1 vss VAA=V
2 ssdif0 VAVA=
3 1 2 bitr3i A=VVA=