Metamath Proof Explorer


Theorem vtocl2ga

Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023) (Proof shortened by Wolf Lammen, 23-Aug-2023)

Ref Expression
Hypotheses vtocl2ga.1 x=Aφψ
vtocl2ga.2 y=Bψχ
vtocl2ga.3 xCyDφ
Assertion vtocl2ga ACBDχ

Proof

Step Hyp Ref Expression
1 vtocl2ga.1 x=Aφψ
2 vtocl2ga.2 y=Bψχ
3 vtocl2ga.3 xCyDφ
4 2 imbi2d y=BACψACχ
5 1 imbi2d x=AyDφyDψ
6 3 ex xCyDφ
7 5 6 vtoclga ACyDψ
8 7 com12 yDACψ
9 4 8 vtoclga BDACχ
10 9 impcom ACBDχ