Metamath Proof Explorer


Theorem vtocl2gf

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995)

Ref Expression
Hypotheses vtocl2gf.1 _xA
vtocl2gf.2 _yA
vtocl2gf.3 _yB
vtocl2gf.4 xψ
vtocl2gf.5 yχ
vtocl2gf.6 x=Aφψ
vtocl2gf.7 y=Bψχ
vtocl2gf.8 φ
Assertion vtocl2gf AVBWχ

Proof

Step Hyp Ref Expression
1 vtocl2gf.1 _xA
2 vtocl2gf.2 _yA
3 vtocl2gf.3 _yB
4 vtocl2gf.4 xψ
5 vtocl2gf.5 yχ
6 vtocl2gf.6 x=Aφψ
7 vtocl2gf.7 y=Bψχ
8 vtocl2gf.8 φ
9 elex AVAV
10 2 nfel1 yAV
11 10 5 nfim yAVχ
12 7 imbi2d y=BAVψAVχ
13 1 4 6 8 vtoclgf AVψ
14 3 11 12 13 vtoclgf BWAVχ
15 9 14 mpan9 AVBWχ