Metamath Proof Explorer


Theorem vtocl2gf

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995)

Ref Expression
Hypotheses vtocl2gf.1
|- F/_ x A
vtocl2gf.2
|- F/_ y A
vtocl2gf.3
|- F/_ y B
vtocl2gf.4
|- F/ x ps
vtocl2gf.5
|- F/ y ch
vtocl2gf.6
|- ( x = A -> ( ph <-> ps ) )
vtocl2gf.7
|- ( y = B -> ( ps <-> ch ) )
vtocl2gf.8
|- ph
Assertion vtocl2gf
|- ( ( A e. V /\ B e. W ) -> ch )

Proof

Step Hyp Ref Expression
1 vtocl2gf.1
 |-  F/_ x A
2 vtocl2gf.2
 |-  F/_ y A
3 vtocl2gf.3
 |-  F/_ y B
4 vtocl2gf.4
 |-  F/ x ps
5 vtocl2gf.5
 |-  F/ y ch
6 vtocl2gf.6
 |-  ( x = A -> ( ph <-> ps ) )
7 vtocl2gf.7
 |-  ( y = B -> ( ps <-> ch ) )
8 vtocl2gf.8
 |-  ph
9 elex
 |-  ( A e. V -> A e. _V )
10 2 nfel1
 |-  F/ y A e. _V
11 10 5 nfim
 |-  F/ y ( A e. _V -> ch )
12 7 imbi2d
 |-  ( y = B -> ( ( A e. _V -> ps ) <-> ( A e. _V -> ch ) ) )
13 1 4 6 8 vtoclgf
 |-  ( A e. _V -> ps )
14 3 11 12 13 vtoclgf
 |-  ( B e. W -> ( A e. _V -> ch ) )
15 9 14 mpan9
 |-  ( ( A e. V /\ B e. W ) -> ch )