| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vtocl3gf.a | 
							 |-  F/_ x A  | 
						
						
							| 2 | 
							
								
							 | 
							vtocl3gf.b | 
							 |-  F/_ y A  | 
						
						
							| 3 | 
							
								
							 | 
							vtocl3gf.c | 
							 |-  F/_ z A  | 
						
						
							| 4 | 
							
								
							 | 
							vtocl3gf.d | 
							 |-  F/_ y B  | 
						
						
							| 5 | 
							
								
							 | 
							vtocl3gf.e | 
							 |-  F/_ z B  | 
						
						
							| 6 | 
							
								
							 | 
							vtocl3gf.f | 
							 |-  F/_ z C  | 
						
						
							| 7 | 
							
								
							 | 
							vtocl3gf.1 | 
							 |-  F/ x ps  | 
						
						
							| 8 | 
							
								
							 | 
							vtocl3gf.2 | 
							 |-  F/ y ch  | 
						
						
							| 9 | 
							
								
							 | 
							vtocl3gf.3 | 
							 |-  F/ z th  | 
						
						
							| 10 | 
							
								
							 | 
							vtocl3gf.4 | 
							 |-  ( x = A -> ( ph <-> ps ) )  | 
						
						
							| 11 | 
							
								
							 | 
							vtocl3gf.5 | 
							 |-  ( y = B -> ( ps <-> ch ) )  | 
						
						
							| 12 | 
							
								
							 | 
							vtocl3gf.6 | 
							 |-  ( z = C -> ( ch <-> th ) )  | 
						
						
							| 13 | 
							
								
							 | 
							vtocl3gf.7 | 
							 |-  ph  | 
						
						
							| 14 | 
							
								
							 | 
							elex | 
							 |-  ( A e. V -> A e. _V )  | 
						
						
							| 15 | 
							
								2
							 | 
							nfel1 | 
							 |-  F/ y A e. _V  | 
						
						
							| 16 | 
							
								15 8
							 | 
							nfim | 
							 |-  F/ y ( A e. _V -> ch )  | 
						
						
							| 17 | 
							
								3
							 | 
							nfel1 | 
							 |-  F/ z A e. _V  | 
						
						
							| 18 | 
							
								17 9
							 | 
							nfim | 
							 |-  F/ z ( A e. _V -> th )  | 
						
						
							| 19 | 
							
								11
							 | 
							imbi2d | 
							 |-  ( y = B -> ( ( A e. _V -> ps ) <-> ( A e. _V -> ch ) ) )  | 
						
						
							| 20 | 
							
								12
							 | 
							imbi2d | 
							 |-  ( z = C -> ( ( A e. _V -> ch ) <-> ( A e. _V -> th ) ) )  | 
						
						
							| 21 | 
							
								1 7 10 13
							 | 
							vtoclgf | 
							 |-  ( A e. _V -> ps )  | 
						
						
							| 22 | 
							
								4 5 6 16 18 19 20 21
							 | 
							vtocl2gf | 
							 |-  ( ( B e. W /\ C e. X ) -> ( A e. _V -> th ) )  | 
						
						
							| 23 | 
							
								14 22
							 | 
							mpan9 | 
							 |-  ( ( A e. V /\ ( B e. W /\ C e. X ) ) -> th )  | 
						
						
							| 24 | 
							
								23
							 | 
							3impb | 
							 |-  ( ( A e. V /\ B e. W /\ C e. X ) -> th )  |