| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtocl3gf.a |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
vtocl3gf.b |
⊢ Ⅎ 𝑦 𝐴 |
| 3 |
|
vtocl3gf.c |
⊢ Ⅎ 𝑧 𝐴 |
| 4 |
|
vtocl3gf.d |
⊢ Ⅎ 𝑦 𝐵 |
| 5 |
|
vtocl3gf.e |
⊢ Ⅎ 𝑧 𝐵 |
| 6 |
|
vtocl3gf.f |
⊢ Ⅎ 𝑧 𝐶 |
| 7 |
|
vtocl3gf.1 |
⊢ Ⅎ 𝑥 𝜓 |
| 8 |
|
vtocl3gf.2 |
⊢ Ⅎ 𝑦 𝜒 |
| 9 |
|
vtocl3gf.3 |
⊢ Ⅎ 𝑧 𝜃 |
| 10 |
|
vtocl3gf.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 11 |
|
vtocl3gf.5 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
| 12 |
|
vtocl3gf.6 |
⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) |
| 13 |
|
vtocl3gf.7 |
⊢ 𝜑 |
| 14 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 15 |
2
|
nfel1 |
⊢ Ⅎ 𝑦 𝐴 ∈ V |
| 16 |
15 8
|
nfim |
⊢ Ⅎ 𝑦 ( 𝐴 ∈ V → 𝜒 ) |
| 17 |
3
|
nfel1 |
⊢ Ⅎ 𝑧 𝐴 ∈ V |
| 18 |
17 9
|
nfim |
⊢ Ⅎ 𝑧 ( 𝐴 ∈ V → 𝜃 ) |
| 19 |
11
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ V → 𝜓 ) ↔ ( 𝐴 ∈ V → 𝜒 ) ) ) |
| 20 |
12
|
imbi2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 ∈ V → 𝜒 ) ↔ ( 𝐴 ∈ V → 𝜃 ) ) ) |
| 21 |
1 7 10 13
|
vtoclgf |
⊢ ( 𝐴 ∈ V → 𝜓 ) |
| 22 |
4 5 6 16 18 19 20 21
|
vtocl2gf |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ∈ V → 𝜃 ) ) |
| 23 |
14 22
|
mpan9 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ) → 𝜃 ) |
| 24 |
23
|
3impb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝜃 ) |