Metamath Proof Explorer


Theorem vtocl3gaf

Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013) (Revised by Mario Carneiro, 11-Oct-2016)

Ref Expression
Hypotheses vtocl3gaf.a _xA
vtocl3gaf.b _yA
vtocl3gaf.c _zA
vtocl3gaf.d _yB
vtocl3gaf.e _zB
vtocl3gaf.f _zC
vtocl3gaf.1 xψ
vtocl3gaf.2 yχ
vtocl3gaf.3 zθ
vtocl3gaf.4 x=Aφψ
vtocl3gaf.5 y=Bψχ
vtocl3gaf.6 z=Cχθ
vtocl3gaf.7 xRySzTφ
Assertion vtocl3gaf ARBSCTθ

Proof

Step Hyp Ref Expression
1 vtocl3gaf.a _xA
2 vtocl3gaf.b _yA
3 vtocl3gaf.c _zA
4 vtocl3gaf.d _yB
5 vtocl3gaf.e _zB
6 vtocl3gaf.f _zC
7 vtocl3gaf.1 xψ
8 vtocl3gaf.2 yχ
9 vtocl3gaf.3 zθ
10 vtocl3gaf.4 x=Aφψ
11 vtocl3gaf.5 y=Bψχ
12 vtocl3gaf.6 z=Cχθ
13 vtocl3gaf.7 xRySzTφ
14 1 nfel1 xAR
15 nfv xyS
16 nfv xzT
17 14 15 16 nf3an xARySzT
18 17 7 nfim xARySzTψ
19 2 nfel1 yAR
20 4 nfel1 yBS
21 nfv yzT
22 19 20 21 nf3an yARBSzT
23 22 8 nfim yARBSzTχ
24 3 nfel1 zAR
25 5 nfel1 zBS
26 6 nfel1 zCT
27 24 25 26 nf3an zARBSCT
28 27 9 nfim zARBSCTθ
29 eleq1 x=AxRAR
30 29 3anbi1d x=AxRySzTARySzT
31 30 10 imbi12d x=AxRySzTφARySzTψ
32 eleq1 y=BySBS
33 32 3anbi2d y=BARySzTARBSzT
34 33 11 imbi12d y=BARySzTψARBSzTχ
35 eleq1 z=CzTCT
36 35 3anbi3d z=CARBSzTARBSCT
37 36 12 imbi12d z=CARBSzTχARBSCTθ
38 1 2 3 4 5 6 18 23 28 31 34 37 13 vtocl3gf ARBSCTARBSCTθ
39 38 pm2.43i ARBSCTθ