Metamath Proof Explorer


Theorem vtocld

Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 2-Sep-2024)

Ref Expression
Hypotheses vtocld.1 φAV
vtocld.2 φx=Aψχ
vtocld.3 φψ
Assertion vtocld φχ

Proof

Step Hyp Ref Expression
1 vtocld.1 φAV
2 vtocld.2 φx=Aψχ
3 vtocld.3 φψ
4 elisset AVxx=A
5 1 4 syl φxx=A
6 3 adantr φx=Aψ
7 6 2 mpbid φx=Aχ
8 5 7 exlimddv φχ