Metamath Proof Explorer


Theorem vtocldf

Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses vtocld.1 φAV
vtocld.2 φx=Aψχ
vtocld.3 φψ
vtocldf.4 xφ
vtocldf.5 φ_xA
vtocldf.6 φxχ
Assertion vtocldf φχ

Proof

Step Hyp Ref Expression
1 vtocld.1 φAV
2 vtocld.2 φx=Aψχ
3 vtocld.3 φψ
4 vtocldf.4 xφ
5 vtocldf.5 φ_xA
6 vtocldf.6 φxχ
7 2 ex φx=Aψχ
8 4 7 alrimi φxx=Aψχ
9 4 3 alrimi φxψ
10 vtoclgft _xAxχxx=AψχxψAVχ
11 5 6 8 9 1 10 syl221anc φχ