Metamath Proof Explorer


Theorem vtoclgf

Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003) (Proof shortened by Mario Carneiro, 10-Oct-2016)

Ref Expression
Hypotheses vtoclgf.1 _xA
vtoclgf.2 xψ
vtoclgf.3 x=Aφψ
vtoclgf.4 φ
Assertion vtoclgf AVψ

Proof

Step Hyp Ref Expression
1 vtoclgf.1 _xA
2 vtoclgf.2 xψ
3 vtoclgf.3 x=Aφψ
4 vtoclgf.4 φ
5 elex AVAV
6 1 issetf AVxx=A
7 4 3 mpbii x=Aψ
8 2 7 exlimi xx=Aψ
9 6 8 sylbi AVψ
10 5 9 syl AVψ