Metamath Proof Explorer


Theorem vtoclg1f

Description: Version of vtoclgf with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-10 and ax-11 . (Contributed by BJ, 1-May-2019)

Ref Expression
Hypotheses vtoclg1f.nf xψ
vtoclg1f.maj x=Aφψ
vtoclg1f.min φ
Assertion vtoclg1f AVψ

Proof

Step Hyp Ref Expression
1 vtoclg1f.nf xψ
2 vtoclg1f.maj x=Aφψ
3 vtoclg1f.min φ
4 elisset AVxx=A
5 3 2 mpbii x=Aψ
6 1 5 exlimi xx=Aψ
7 4 6 syl AVψ