Metamath Proof Explorer


Theorem wfrdmcl

Description: Given F = wrecs ( R , A , X ) /\ X e. dom F , then its predecessor class is a subset of dom F . (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem6.1 F = wrecs R A G
Assertion wfrdmcl X dom F Pred R A X dom F

Proof

Step Hyp Ref Expression
1 wfrlem6.1 F = wrecs R A G
2 df-wrecs wrecs R A G = f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y
3 1 2 eqtri F = f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y
4 3 dmeqi dom F = dom f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y
5 dmuni dom f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y = g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y dom g
6 4 5 eqtri dom F = g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y dom g
7 6 eleq2i X dom F X g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y dom g
8 eliun X g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y dom g g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y X dom g
9 7 8 bitri X dom F g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y X dom g
10 eqid f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y = f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y
11 10 wfrlem1 f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y = g | z g Fn z z A w z Pred R A w z w z g w = G g Pred R A w
12 11 abeq2i g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y z g Fn z z A w z Pred R A w z w z g w = G g Pred R A w
13 predeq3 w = X Pred R A w = Pred R A X
14 13 sseq1d w = X Pred R A w z Pred R A X z
15 14 rspccv w z Pred R A w z X z Pred R A X z
16 15 adantl g Fn z w z Pred R A w z X z Pred R A X z
17 fndm g Fn z dom g = z
18 17 eleq2d g Fn z X dom g X z
19 17 sseq2d g Fn z Pred R A X dom g Pred R A X z
20 18 19 imbi12d g Fn z X dom g Pred R A X dom g X z Pred R A X z
21 20 adantr g Fn z w z Pred R A w z X dom g Pred R A X dom g X z Pred R A X z
22 16 21 mpbird g Fn z w z Pred R A w z X dom g Pred R A X dom g
23 22 adantrl g Fn z z A w z Pred R A w z X dom g Pred R A X dom g
24 23 3adant3 g Fn z z A w z Pred R A w z w z g w = G g Pred R A w X dom g Pred R A X dom g
25 24 exlimiv z g Fn z z A w z Pred R A w z w z g w = G g Pred R A w X dom g Pred R A X dom g
26 12 25 sylbi g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y X dom g Pred R A X dom g
27 26 reximia g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y X dom g g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y Pred R A X dom g
28 ssiun g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y Pred R A X dom g Pred R A X g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y dom g
29 27 28 syl g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y X dom g Pred R A X g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y dom g
30 9 29 sylbi X dom F Pred R A X g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y dom g
31 30 6 sseqtrrdi X dom F Pred R A X dom F