Metamath Proof Explorer


Theorem frrdmcl

Description: Show without using the axiom of replacement that for a "function" defined by well-founded recursion, the predecessor class of an element of its domain is a subclass of its domain. (Contributed by Scott Fenton, 21-Apr-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Hypothesis frrrel.1 F = frecs R A G
Assertion frrdmcl X dom F Pred R A X dom F

Proof

Step Hyp Ref Expression
1 frrrel.1 F = frecs R A G
2 predeq3 z = X Pred R A z = Pred R A X
3 2 sseq1d z = X Pred R A z dom F Pred R A X dom F
4 eqid f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
5 4 1 frrlem8 z dom F Pred R A z dom F
6 3 5 vtoclga X dom F Pred R A X dom F