Description: Lemma for well-founded recursion. dom F is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frrlem5.1 | |
|
frrlem5.2 | |
||
Assertion | frrlem8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem5.1 | |
|
2 | frrlem5.2 | |
|
3 | vex | |
|
4 | 3 | eldm2 | |
5 | 1 2 | frrlem5 | |
6 | 1 | frrlem1 | |
7 | 6 | unieqi | |
8 | 5 7 | eqtri | |
9 | 8 | eleq2i | |
10 | eluniab | |
|
11 | 9 10 | bitri | |
12 | simpr2r | |
|
13 | vex | |
|
14 | 3 13 | opeldm | |
15 | 14 | adantr | |
16 | simpr1 | |
|
17 | 16 | fndmd | |
18 | 15 17 | eleqtrd | |
19 | rsp | |
|
20 | 12 18 19 | sylc | |
21 | 20 17 | sseqtrrd | |
22 | 19.8a | |
|
23 | 6 | eqabri | |
24 | 22 23 | sylibr | |
25 | 24 | adantl | |
26 | elssuni | |
|
27 | 25 26 | syl | |
28 | 27 5 | sseqtrrdi | |
29 | dmss | |
|
30 | 28 29 | syl | |
31 | 21 30 | sstrd | |
32 | 31 | expcom | |
33 | 32 | exlimiv | |
34 | 33 | impcom | |
35 | 34 | exlimiv | |
36 | 11 35 | sylbi | |
37 | 36 | exlimiv | |
38 | 4 37 | sylbi | |