Metamath Proof Explorer


Theorem frrlem8

Description: Lemma for well-founded recursion. dom F is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022)

Ref Expression
Hypotheses frrlem5.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
frrlem5.2 F=frecsRAG
Assertion frrlem8 zdomFPredRAzdomF

Proof

Step Hyp Ref Expression
1 frrlem5.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
2 frrlem5.2 F=frecsRAG
3 vex zV
4 3 eldm2 zdomFwzwF
5 1 2 frrlem5 F=B
6 1 frrlem1 B=g|agFnaaAzaPredRAzazagz=zGgPredRAz
7 6 unieqi B=g|agFnaaAzaPredRAzazagz=zGgPredRAz
8 5 7 eqtri F=g|agFnaaAzaPredRAzazagz=zGgPredRAz
9 8 eleq2i zwFzwg|agFnaaAzaPredRAzazagz=zGgPredRAz
10 eluniab zwg|agFnaaAzaPredRAzazagz=zGgPredRAzgzwgagFnaaAzaPredRAzazagz=zGgPredRAz
11 9 10 bitri zwFgzwgagFnaaAzaPredRAzazagz=zGgPredRAz
12 simpr2r zwggFnaaAzaPredRAzazagz=zGgPredRAzzaPredRAza
13 vex wV
14 3 13 opeldm zwgzdomg
15 14 adantr zwggFnaaAzaPredRAzazagz=zGgPredRAzzdomg
16 simpr1 zwggFnaaAzaPredRAzazagz=zGgPredRAzgFna
17 16 fndmd zwggFnaaAzaPredRAzazagz=zGgPredRAzdomg=a
18 15 17 eleqtrd zwggFnaaAzaPredRAzazagz=zGgPredRAzza
19 rsp zaPredRAzazaPredRAza
20 12 18 19 sylc zwggFnaaAzaPredRAzazagz=zGgPredRAzPredRAza
21 20 17 sseqtrrd zwggFnaaAzaPredRAzazagz=zGgPredRAzPredRAzdomg
22 19.8a gFnaaAzaPredRAzazagz=zGgPredRAzagFnaaAzaPredRAzazagz=zGgPredRAz
23 6 eqabri gBagFnaaAzaPredRAzazagz=zGgPredRAz
24 22 23 sylibr gFnaaAzaPredRAzazagz=zGgPredRAzgB
25 24 adantl zwggFnaaAzaPredRAzazagz=zGgPredRAzgB
26 elssuni gBgB
27 25 26 syl zwggFnaaAzaPredRAzazagz=zGgPredRAzgB
28 27 5 sseqtrrdi zwggFnaaAzaPredRAzazagz=zGgPredRAzgF
29 dmss gFdomgdomF
30 28 29 syl zwggFnaaAzaPredRAzazagz=zGgPredRAzdomgdomF
31 21 30 sstrd zwggFnaaAzaPredRAzazagz=zGgPredRAzPredRAzdomF
32 31 expcom gFnaaAzaPredRAzazagz=zGgPredRAzzwgPredRAzdomF
33 32 exlimiv agFnaaAzaPredRAzazagz=zGgPredRAzzwgPredRAzdomF
34 33 impcom zwgagFnaaAzaPredRAzazagz=zGgPredRAzPredRAzdomF
35 34 exlimiv gzwgagFnaaAzaPredRAzazagz=zGgPredRAzPredRAzdomF
36 11 35 sylbi zwFPredRAzdomF
37 36 exlimiv wzwFPredRAzdomF
38 4 37 sylbi zdomFPredRAzdomF