| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frrlem5.1 |
|- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
| 2 |
|
frrlem5.2 |
|- F = frecs ( R , A , G ) |
| 3 |
|
vex |
|- z e. _V |
| 4 |
3
|
eldm2 |
|- ( z e. dom F <-> E. w <. z , w >. e. F ) |
| 5 |
1 2
|
frrlem5 |
|- F = U. B |
| 6 |
1
|
frrlem1 |
|- B = { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } |
| 7 |
6
|
unieqi |
|- U. B = U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } |
| 8 |
5 7
|
eqtri |
|- F = U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } |
| 9 |
8
|
eleq2i |
|- ( <. z , w >. e. F <-> <. z , w >. e. U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } ) |
| 10 |
|
eluniab |
|- ( <. z , w >. e. U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } <-> E. g ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) ) |
| 11 |
9 10
|
bitri |
|- ( <. z , w >. e. F <-> E. g ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) ) |
| 12 |
|
simpr2r |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> A. z e. a Pred ( R , A , z ) C_ a ) |
| 13 |
|
vex |
|- w e. _V |
| 14 |
3 13
|
opeldm |
|- ( <. z , w >. e. g -> z e. dom g ) |
| 15 |
14
|
adantr |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> z e. dom g ) |
| 16 |
|
simpr1 |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g Fn a ) |
| 17 |
16
|
fndmd |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> dom g = a ) |
| 18 |
15 17
|
eleqtrd |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> z e. a ) |
| 19 |
|
rsp |
|- ( A. z e. a Pred ( R , A , z ) C_ a -> ( z e. a -> Pred ( R , A , z ) C_ a ) ) |
| 20 |
12 18 19
|
sylc |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ a ) |
| 21 |
20 17
|
sseqtrrd |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom g ) |
| 22 |
|
19.8a |
|- ( ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) |
| 23 |
6
|
eqabri |
|- ( g e. B <-> E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) |
| 24 |
22 23
|
sylibr |
|- ( ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> g e. B ) |
| 25 |
24
|
adantl |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g e. B ) |
| 26 |
|
elssuni |
|- ( g e. B -> g C_ U. B ) |
| 27 |
25 26
|
syl |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g C_ U. B ) |
| 28 |
27 5
|
sseqtrrdi |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g C_ F ) |
| 29 |
|
dmss |
|- ( g C_ F -> dom g C_ dom F ) |
| 30 |
28 29
|
syl |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> dom g C_ dom F ) |
| 31 |
21 30
|
sstrd |
|- ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom F ) |
| 32 |
31
|
expcom |
|- ( ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> ( <. z , w >. e. g -> Pred ( R , A , z ) C_ dom F ) ) |
| 33 |
32
|
exlimiv |
|- ( E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> ( <. z , w >. e. g -> Pred ( R , A , z ) C_ dom F ) ) |
| 34 |
33
|
impcom |
|- ( ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom F ) |
| 35 |
34
|
exlimiv |
|- ( E. g ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom F ) |
| 36 |
11 35
|
sylbi |
|- ( <. z , w >. e. F -> Pred ( R , A , z ) C_ dom F ) |
| 37 |
36
|
exlimiv |
|- ( E. w <. z , w >. e. F -> Pred ( R , A , z ) C_ dom F ) |
| 38 |
4 37
|
sylbi |
|- ( z e. dom F -> Pred ( R , A , z ) C_ dom F ) |