Metamath Proof Explorer


Definition df-pred

Description: Define the predecessor class of a binary relation. This is the class of all elements y of A such that y R X (see elpred ). (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Assertion df-pred PredRAX=AR-1X

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR classR
1 cA classA
2 cX classX
3 1 0 2 cpred classPredRAX
4 0 ccnv classR-1
5 2 csn classX
6 4 5 cima classR-1X
7 1 6 cin classAR-1X
8 3 7 wceq wffPredRAX=AR-1X