Metamath Proof Explorer


Theorem frrdmcl

Description: Show without using the axiom of replacement that for a "function" defined by well-founded recursion, the predecessor class of an element of its domain is a subclass of its domain. (Contributed by Scott Fenton, 21-Apr-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Hypothesis frrrel.1 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 )
Assertion frrdmcl ( 𝑋 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ dom 𝐹 )

Proof

Step Hyp Ref Expression
1 frrrel.1 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 )
2 predeq3 ( 𝑧 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑧 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )
3 2 sseq1d ( 𝑧 = 𝑋 → ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ↔ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ dom 𝐹 ) )
4 eqid { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) }
5 4 1 frrlem8 ( 𝑧 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 )
6 3 5 vtoclga ( 𝑋 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ dom 𝐹 )