Step |
Hyp |
Ref |
Expression |
1 |
|
frrrel.1 |
⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) |
2 |
|
predeq3 |
⊢ ( 𝑧 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑧 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
3 |
2
|
sseq1d |
⊢ ( 𝑧 = 𝑋 → ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ↔ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ dom 𝐹 ) ) |
4 |
|
eqid |
⊢ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
5 |
4 1
|
frrlem8 |
⊢ ( 𝑧 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
6 |
3 5
|
vtoclga |
⊢ ( 𝑋 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ dom 𝐹 ) |