Metamath Proof Explorer


Theorem fprfung

Description: A "function" defined by well-founded recursion is indeed a function when the relation is a partial order. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis fprfung.1 F=frecsRAG
Assertion fprfung RFrARPoARSeAFunF

Proof

Step Hyp Ref Expression
1 fprfung.1 F=frecsRAG
2 eqid f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
3 2 1 fprlem1 RFrARPoARSeAgf|xfFnxxAyxPredRAyxyxfy=yGfPredRAyhf|xfFnxxAyxPredRAyxyxfy=yGfPredRAyxguxhvu=v
4 2 1 3 frrlem9 RFrARPoARSeAFunF