Metamath Proof Explorer


Theorem fprfung

Description: A "function" defined by well-founded recursion is indeed a function when the relationship is a partial order. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis fprfung.1 F = frecs R A G
Assertion fprfung R Fr A R Po A R Se A Fun F

Proof

Step Hyp Ref Expression
1 fprfung.1 F = frecs R A G
2 eqid f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
3 2 1 fprlem1 R Fr A R Po A R Se A g f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y h f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y x g u x h v u = v
4 2 1 3 frrlem9 R Fr A R Po A R Se A Fun F