Metamath Proof Explorer


Theorem wl-luk-ax1

Description: ax-1 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion wl-luk-ax1 φ ψ φ

Proof

Step Hyp Ref Expression
1 ax-luk3 φ ¬ φ ¬ ψ
2 wl-luk-ax3 ¬ φ ¬ ψ ψ φ
3 1 2 wl-luk-syl φ ψ φ